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Abstract

In this paper, a Kalman filter formulation for attitude estimation is derived

using the Modified Rodrigues Parameters. The extended Kalman filter

uses a gyro-based model for attitude propagation. Two solutions are

developed for the sensitivity matrix in the Kalman filter. One is based upon

an additive error approach, and the other is based upon a multiplicative

error approach. It is shown that the two solutions are in fact equivalent.

The Kalman filter is then used to estimate the attitude of a simulated

spacecraft. Results indicate that the new algorithm produces accurate

attitude estimates by determining actual gyro biases.

Introduction

A widely used parameterization for attitude estimation is the quaternion representation. Advantages

of using quaternions include: 1) the kinematic equations are linear with respect to angular velocities, 2)

singularities are not present for any eigenaxis rotation, and 3) the attitude matrix is algebraic in the

quaternion components. However, since the quaternion parameterization involves the use of four

components to represent the attitude motion, the quaternion components are non-minimal (dependent).

This leads to a constraint that the quaternion must have unit norm.

The quaternion normalization constraint produces a singularity in the Kalman filter covariance matrix.

Three solutions (two of which yield identical results) to this problem are summarized by Lefferts et al.

[1]. The first approach uses the transition matrix of the state-error vector to obtain a reduced order

representation of the error covariance. The second approach deletes one of the quaternion components

in order to obtain a truncated error covariance expression. The third approach uses an incremental

quaternion error which results in a representation that is identical to the fh-st approach. This approach is

most commonly used to maintain normalization for the estimated quaternion.

Three-dimensional parameterizations of attitude are still useful for many control applications (e.g., see

[2-3]). Since spacecraft control algorithms require estimates of attitude and/or rate, it is therefore

advantageous to develop a Kalman filter which utilizes a three-dimensional parameterization. A number
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of three-dimensional parameterizations is shown in an excellent survey by Shuster [4]; including, the

Euler angle representation, the Rodrigues parameters, and the modified Rodrigues parameters. It is

widely known that 'all three-dimensional parameterizations have singularities (e.g., the Rodrigues

parameters are singular for 180 degree rotations [4]). The choice of parameters depends on a number of

factors; for example, the type of rotation maneuver for the spacecraft, computational requirements,

physical representation insight, etc.

Most control applications require a parameterization that has the singularity as far from the origin as

possible. Specifically, the modified Rodrigues parameters (MRP) [5] have recently been used for

spacecraft control applications, since they allow for rotations up to 360 degrees. Tsiotras [6] utilized the

MRP to derive a new class of globally asymptotically stabilizing feedback control laws. Schaub et. al. [7]

utilized the MRP to estimate external torques by tracking a Lyapunov function. Crassidis and Markley

[8] utilized the MRP to develop a sliding mode controller for spacecraft maneuvers. However, the

aforementioned control schemes assume that the attitude (i.e., the MRP) is already known. For this

reason, a Kalman filter using the modified Rodrigues parameters is developed in this paper.

The organization of this paper proceeds as follows. First, a brief review of the quaternion and MRP

kinematic equations is shown. Then, a brief review of the Kalman filter is shown using the quaternion

representation. Next, a Kalman filter for attitude estimation is derived using the MRP. Also, the

sensitivity matrix is derived using both an additive and a multiplicative approach. Finally, the new

algorithm is used to estimate the attitude of the Tropical Rainfall Measurement Mission (TRMM)

spacecraft.

Attitude Kinematics

In this section, a brief review of the kinematic equations of motion using the modified Rodrigues

parameters is shown. This parameterization is derived by employing a stereographic projection of the

quaternions. The quaternion representation is given by

with

I ql (O)
q13 = q2 =_hsin

q3

q4 = cos(O)

(1)

(2a)

(2b)

is the angle of rotation. Thewhere _ is a unit vector corresponding to the axis of rotation and 0

quaternion kinematic equations of motion are derived by using the spacecraft's angular velocity (_),

given by
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where _(m) and -=(q) are defined as

! ]a(@- ......
[ ---t.0T ! 0

q413×3 +[q13 X]]

]

where 13× 3 is a 3 x3 identity matrix.

cross product matrices since a × b = [a ×]b, with

(4a)

(4b)

The 3x3 dimensional matrices [_x] and [q,3 x] are referred to as

0 -a3 a2 1
[ax] = a 3 0 -a 1

-a 2 a 1 0

(5)

Since a three degree-of-freedom attitude system is represented by a four-dimensional vector, the

quaternions cannot be independent. This condition leads to the following normalization constraint

q Tq = qT3ql3 + q2 = 1 (6)

The modified Rodrigues parameters are defined by [5]

q13 __titan(O) (7)p- l+q4

where p is a 3 x l vector. The kinematic equations of motion are derived by using the spacecraft's

angular velocity (m), given by [4]

= m__-2m_ xp+2(m_-p)p (8)

where [ [ is the norm operator, and • is the dot product. This equation may be re-written as

1 1 T x]+eer}mel,,x,+[e (9)

The measurement model is assumed to be of the form given by [4]

BB=A(p_)BI (10)

where B l is a 3xl dimensional vector of some reference object (e.g., a vector to the sun or to a star, or

the Earth's magnetic field vector) in a reference coordinate system, B 8 is a 3xl dimensional vector

defining the components of the corresponding reference vector measured in the spacecraft body frame,

and A(_p) is given by
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8 [e×]2
a(e) (l+e e)2

which is the 3 x 3 dimensional (orthogonal) attitude matrix.

Kaiman Filter Development

In this section, a Kalman filter is derived for attitude estimation using the modified Rodrigues

parameters. First a brief review of basic principles of the Kalman filter using quaternions is shown (see

[1] for more details). The state error vector has seven components consisting of a four-component error

quatemion (Sq) and a three-vector gyro bias error A/2_,given by

A_x_f = .A_ (12)

The error quaternion is defined as

8q=q®O -1 (13)

where q is the true quaternion and _ is the estimated quatemion. Also, the operator ® refers to

quaternion multiplication (see [4] for details). Since the incremental quaternion corresponds to a small

rotation, Equation (13) can be approximated by

8q = [8.1'.3. ] (14)

which reduces the four-component error quatemion into a three-component (half-angle) representation.

Equation (14) is then used to derive a quaternion based Kalman filter (see [1] for details).

The state equation for the new algorithm consists of the modified Rodrigues parameters (£) and a

gyro bias corrections (_b), given by

_x= [_] (15)

The true angular velocity is assumed to be modeled by

¢.0=_-b-rl 1 (16)

where _ is the true angular velocity, _ is the gyro-measured angular velocity, and b__is the gyro drift

vector, which is modeled by

-b=_-2 (17)

The 3 x 1 vectors, _-1 and _2' are assumed to be modeled by a Gaussian white-noise process with
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w-r ,.1
- 0-2_1

E{_w(t)} =0

E{w(t)w r(t')} = QS(t-t')

The true state-model equation can now be written as

(18a)

where

(18b)

(18c)

: f(p,b,_, t)+ g(p, rll, t) (19a)

b =r12 (19b)

1 1

g(__P,rll, t)=-_{_ (1 - _PT_p) I3x3 + [p X] + _p_pT}__l

(20a)

(20b)

The extended Kalman filter utilizes a first-order Taylor series expansion for the state-error equation,

given by

where

Ak_=FAx+_ Gw_ (21)

F= 5-_

of°"
LG21 G22J

and

__ )1_1 1c_=_= ( prp)i3,<3+[e×]+eer
On___

(22a)

(22b)

(23a)

G12 = G21 = 03x 3 (23b)

G22 = 13x3 (23c)

The estimated state-error equation is given by

___= F1x:_ - ___ (24a)
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AS -x-_

The partial derivatives in Equation (24a) for the state-error matrix are given by

0f I /3T_ x=_=l{-_r-_- -[_×]+(_r_)_3×3}

where

Of x:2 1 1 +/3/3T }

State-observable discrete measurements are assumed to be modeled by

z_k=h_(x_)+v_k

where

hk(x_)=A(e_)-8,,

and v k is assumed to be modeled by a zero-mean Gaussian process with

The sensitivity matrix can be written as

Hk=[L ! 03x3]

where L can be derived using an additive approach or a multiplicative approach.

expands _.hk (x k ) in a power series about _2k , given by

+__h__ A-Xkhk(x_) =hk(__)
-PIx_=__

The brute force differentiation in Equation (31) can be shown to be given by

16 t_(_+____1_{_(_-_)__,__-(_-___)[__,_]__-_ ___y
__ _ /tk

(24b)

(25a)

(25b)

(26)

(27)

(28)

(29a)

(29b)

(30)

The additive approach

I3x3- 2/3/3T)+ 2__BT- 4B//3T + 2(/3 TB/) I3x3 }ltl'

(31)

(32)
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whichis somewhatcomplicated.Themultiplicativeapproachassumesthatthe trueparametersaregiven
by

p =8p®/3 (33)

where 8_p is the error MRP. The composition rule for the MRP leads to the following

p = (34)

- 1+ 8_2/32_28p./3

For small 8 p, Equation (34) can be approximated using

(35)

From

A(p)=A(Sp)A(_) (36)

it follows that

: I
-P -

(37)

and using the fact that for small 8 p

A(SP) = 13×3 -418P ×] (38)

Equation (37) can now be evaluated using the chain rule to yield

L=4[A(_)B__ I x]{(1 -/3 T/3) I3x 3 + 2[/3×]+2/3/3T}-lLk

- 4 [A(_)BIX]{(1-[_T_)I3x3-2[_X]+2_T }

(39)

which is in a simpler form as compared with Equation (32). In fact, these equations are identical, thereby

proving the equivalence between a multiplicative and an additive approach for the MRP in the Kalman

filter. Also, the matrix in Equation (39) has at most rank two, which reflects the fact that the observation

vector contains no information about rotations around an axis specified by that vector at each

measurement point. The extended Kalman filter equations for attitude estimation are summarized by
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^

k - _f(j_,t)

p = p + prp + dOdr

(40a)

(4Oh)

(40c)

(40d)

(40e)

where

d,, !d_ ... : .-.

[03×3 ! 13x3J

Spacecraft Simulation and Results

(41)

A simulation study is performed using the Tropical Rainfall Measurement Mission (TRMM)

spacecraft orbit parameters. The TRMM spacecraft (see Figure 1) is due to be launched in 1997 with a

nominal mission life of 42 months. The main objectives of this mission include: (i) to obtain multi-year

measurements of tropical and subtropical rainfall, (ii) to understand how interactions between the sea, air,

and land masses produce changes in global rainfall and climate, and (iii) to help improve the modeling of

tropical rainfall proCesses and their influence on global circulation. The simulated spacecraft has a near
circular orbit at 350 km. The nominal mission mode requires a rotation once per orbit (i.e., 236 deg/hr)

about the spacecraft's y-axis while holding the remaining axis rotations near zero. The attitude sensors

used in the simulation include a three-axis magnetometer (TAM) and two digital sun sensors (DSSs).

The magnetic field reference is modeled using a 10th order International Geomagnetic Reference

Field (IGRF) model. TAM sensor noise is modeled by a Gaussian white-noise process with a mean of

zero and a standard deviation of 0.5 mG. The two DSSs each have a field of view of about 50°x 50 °, and

combine to provide sun measurements for about 2/3 of a complete orbit. Figure 2 shows the availability
of the sun sensor as a function of time. The DSS sensor noise is also modeled by a Gaussian white-noise

process with a mean of zero and a standard deviation of 0.05 °. The gyro "measurements" are simulated

using Equations (16) and (17), with a gyro noise standard deviation of 0.062 deg/hr, a ramp noise

standard deviation of 0.235 deg/hr/hr, and an initial drift of 0.1 deg/hr on each axis.

A plot of the estimated MRP for a typical simulation mn using the extended Kalman filter is shown in

Figure 3. Since, the rotation does not exceed 360 ° a discrete jump to the origin is not required. A plot of

the corresponding gyro-bias estimates is shown in Figure 4. Plots of the attitude covariance and gyro-

bias covariances are shown in Figures 5 and 6, respectively. The increase in the attitude covariance (at

approximately the second and fifth hour) is due to the fact that the rotation approaches 360 ° as shown in

Figure 7 (i.e., the fourth quaternion component is close to 1). A plot of the roll, pitch, and yaw attitude

errors is shown in Figure 8. From these figures, it is clear that the extended Kalman filter developed in

this paper is able to accurately estimate the attitude and gyro-biases of the simulated spacecraft, and

achieves the same degree of accuracy as the quaternion-based Kalman filter (see [9]).
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Figure I TRMM Spacecraft
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Estimated Modified-Rodrigues Parameters
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Figure 4 Plot of Kalman Filter Gyro-Bias Estimates
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Kalman Filter Modified-Rodrigues Covariance
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Conclusions

In this paper, a Kalman filter was developed for attitude estimation using the modified Rodrigues

parameters. Conceptually, the computational requirements for the new algorithm are comparable to the

quaternion-based Kalman filter. However, the formulation shown in this paper avoided the normalization

constraint associated with the quaternion representation. Therefore, methods to maintain a singular
covariance matrix using the quaternion representation in the Kalman filter have been eliminated.

However, a singularity exists for 360 degree rotations. This may be avoided by allowing for a discrete

jump to the origin when the rotation approaches the singularity. Simulation results indicate that the new

algorithm was able to accurately estimate for the spacecraft attitude and the gyro-biases.
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